Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3

Author:

Naski M.C.1,Colvin J.S.1,Coffin J.D.1,Ornitz D.M.1

Affiliation:

1. Department of Molecular Biology and Pharmacology, Washington University School of Medicine, Campus Box 8103, St. Louis, MO 63110, USA.

Abstract

Fibroblast growth factor receptor 3 (FGFR3) is a key regulator of skeletal growth and activating mutations in Fgfr3 cause achondroplasia, the most common genetic form of dwarfism in humans. Little is known about the mechanism by which FGFR3 inhibits bone growth and how FGFR3 signaling interacts with other signaling pathways that regulate endochondral ossification. To understand these mechanisms, we targeted the expression of an activated FGFR3 to growth plate cartilage in mice using regulatory elements from the collagen II gene. As with humans carrying the achondroplasia mutation, the resulting transgenic mice are dwarfed, with axial, appendicular and craniofacial skeletal hypoplasia. We found that FGFR3 inhibited endochondral bone growth by markedly inhibiting chondrocyte proliferation and by slowing chondrocyte differentiation. Significantly, FGFR3 downregulated the Indian hedgehog (Ihh) signaling pathway and Bmp4 expression in both growth plate chondrocytes and in the perichondrium. Conversely, Bmp4 expression is upregulated in the perichondrium of Fgfr3−/− mice. These data support a model in which Fgfr3 is an upstream negative regulator of the hedgehog (Hh) signaling pathway. Additionally, Fgfr3 may coordinate the growth and differentiation of chondrocytes with the growth and differentiation of osteoprogenitor cells by simultaneously modulating Bmp4 and patched expression in both growth plate cartilage and in the perichondrium.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3