Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development

Author:

Grigoriou M.1,Tucker A.S.1,Sharpe P.T.1,Pachnis V.1

Affiliation:

1. Division of Developmental Neurobiology, The National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.

Abstract

LIM-homeobox containing (Lhx) genes encode trascriptional regulators which play critical roles in a variety of developmental processes. We have identified two genes belonging to a novel subfamily of mammalian Lhx genes, designated Lhx6 and Lhx7. Whole-mount in situ hybridisation showed that Lhx6 and Lhx7 were expressed during mouse embryogenesis in overlapping domains of the first branchial arch and the basal forebrain. More specifically, expression of Lhx6 and Lhx7 was detected prior to initiation of tooth formation in the presumptive oral and odontogenic mesenchyme of the maxillary and mandibular processes. During tooth formation, expression was restricted to the mesenchyme of individual teeth. Using explant cultures, we have shown that expression of Lhx6 and Lhx7 in mandibular mesenchyme was under the control of signals derived from the overlying epithelium; such signals were absent from the epithelium of the non-odontogenic second branchial arch. Furthermore, expression studies and bead implantation experiments in vitro have provided strong evidence that Fgf8 is primarily responsible for the restricted expression of Lhx6 and Lhx7 in the oral aspect of the maxillary and mandibular processes. In the telencephalon, expression of both genes was predominantly localised in the developing medial ganglionic eminences, flanking a Fgf8-positive midline region. We suggest that Fgf8 and Lhx6 and Lhx7 are key components of signalling cascades which determine morphogenesis and differentiation in the first branchial arch and the basal forebrain.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 174 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3