Affiliation:
1. Biological Institute, Faculty of Science, Tohoku University, Sendai, Japan.
Abstract
In Arabidopsis thaliana, shoot redifferentiation and root redifferentiation can be induced at high frequency from hypocotyl and root explants by a two-step culture method. Tissues are precultured on callus-inducing medium and then transferred onto shoot-inducing medium for shoot redifferentiation or onto root-inducing medium for root redifferentiation. In an attempt to dissect these organogenic processes genetically, we characterized the responses in tissue culture of srd1, srd2 and srd3 mutants that were originally isolated as temperature-sensitive strains with defects in shoot redifferentiation (Yasutani, I., Ozawa, S., Nishida, T., Sugiyama, M. and Komamine, A. (1994) Plant Physiol. 105, 815–822). These mutants exhibited temperature sensitivity at different steps of organogenesis, which allowed the identification of three states associated with organogenic competence: IC (incompetent); CR (competent with respect to root redifferentiation); and CSR (competent with respect to shoot and root redifferentiation). Hypocotyl explants were shown to be in the IC state at the initiation of culture and to enter the CSR state, via the CR state, during preculture on callus-inducing medium, whereas root explants seemed to be in the CR state at the initiation of culture. The transition from IC to CR and that from CR to CSR appeared to require the functions of SRD2 and SRD3, respectively. It appears that explants in the CSR state redifferentiate shoots with the aid of the products of SRD1 and SRD2 when transplanted onto shoot-inducing medium. Histological examination of the srd mutants revealed that the function of SRD2 is required not only for organogenesis but also for the reinitiation of cell proliferation in hypocotyl explants during culture on callus-inducing medium. Linkage analysis using RFLP markers indicated that SRD1, SRD2, and SRD3 are located at the lower region, the central region, and the upper region of chromosome 1, respectively.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献