Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development

Author:

Miralles F.1,Czernichow P.1,Scharfmann R.1

Affiliation:

1. INSERM U457, Hospital R. Debre, Boulevard Serurier, 75019 Paris, France. miralles@infobiogen.fr

Abstract

In this study, we have investigated the role of the embryonic mesenchyme in the development of the pancreas. We have compared the development in vitro of E12.5 rat pancreatic rudiments grown in the presence or absence of mesenchyme. When the E12.5 pancreatic epithelial rudiment is cultured in the presence of its surrounding mesenchyme, both morphogenesis and cytodifferentiation of the exocrine component of the pancreas are completely achieved, while only a few immature endocrine cells develop. The pancreatic rudiments grown in the absence of mesenchyme develop in a completely different way; the exocrine tissue develops poorly and fails to undergo acinar morphogenesis, while the endocrine tissue develops actively. Four times more insulin-positive cells develop after removal of the mesenchyme than in the cultures performed in the presence of mesenchyme. Moreover, the insulin-expressing cells developed in the mesenchyme-depleted rudiments appear mature since they do not coexpress glucagon, express the glucose transporter Glut-2 and express Rab3A, a molecule associated with the secretory granules. Moreover, these endocrine cells are able to associate and form true islets. Both the inductive effect of the mesenchyme on the proper development of the exocrine tissue and its repressive effect on the development of the endocrine cells are mediated by soluble factors. Follistatin, which is expressed by E12.5 pancreatic mesenchyme, can mimic both inductive and repressive effects of the mesenchyme. Follistatin could thus represent one of the mesenchymal factors required for the development of the exocrine tissue while exerting a repressive role on the differentiation of the endocrine cells.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3