Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation

Author:

Kroll K.L.1,Salic A.N.1,Evans L.M.1,Kirschner M.W.1

Affiliation:

1. Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. kkroll@bcmp.med.harvard.edu

Abstract

In an expression cloning screen in Xenopus embryos, we identified a gene that when overexpressed expanded the neural plate at the expense of adjacent neural crest and epidermis. This gene, which we named geminin, had no sequence similarity to known gene families. We later discovered that geminin's neuralizing domain was part of a bifunctional protein whose C-terminal coiled-coil domain may play a role in regulating DNA replication. We report here on the neuralizing function of geminin. The localization, effect of misexpression and activity of a dominant negative geminin suggest that the product of this gene has an essential early role in specifying neural cell fate in vertebrates. Maternal geminin mRNA is found throughout the animal hemisphere from oocyte through late blastula. At the early gastrula, however, expression is restricted to a dorsal ectodermal territory that prefigures the neural plate. Misexpression of geminin in gastrula ectoderm suppresses BMP4 expression and converts prospective epidermis into neural tissue. In ectodermal explants, geminin induces expression of the early proneural gene neurogenin-related 1 although not itself being induced by that gene. Later, embryos expressing geminin have an expanded dorsal neural territory and ventral ectoderm is converted to neurons. A putative dominant negative geminin lacking the neuralizing domain suppresses neural differentiation and, when misexpressed dorsally, produces islands of epidermal gene expression within the neurectodermal territory, effects that are rescued by coexpression of the full-length molecule. Taken together, these data indicate that geminin plays an early role in establishing a neural domain during gastrulation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3