Affiliation:
1. Laboratory of Cellular and Molecular Neurophysiology, NICHD, NIH, Bethesda, MD 20892-4495, USA.
Abstract
We tested the hypothesis that the neurotransmitter glutamate would influence glial proliferation and differentiation in a cytoarchitecturally intact system. Postnatal day 6 cerebellar slices were maintained in organotypic culture and treated with glutamate receptor agonists or antagonists. After dissociation, cells were stained with antibodies for different oligodendrocyte developmentally regulated antigens. Treatment of the slices with the glutamate receptor agonists kainate or alpha -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid significantly decreased the percentage of LB1(+), NG2(+) and O4(+) cells, and their bromodeoxyuridine labeling index. The non-N-methyl-D-aspartate glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione increased the percentage and bromodeoxyuridine labeling of LB1(+), NG2(+) and O4(+) cells. In intact slices, RNA levels of the oligodendrocyte gene for 2′,3′-cyclic nucleotide 3′-phosphodiesterase were decreased by kainate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and increased by 6,7-dinitroquinoxaline-2,3-dione. The percentage of astrocytes was not modified by kainate, alpha -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or 6, 7-dinitroquinoxaline-2,3-dione. Treatment with the N-methyl-D-aspartate receptor antagonist 2-amino-5-phosphonopentanoic acid did not alter the percentage of O4(+) cells, nor their proliferation. Incubation with the gamma-aminobutyric acid receptor antagonist bicuculline did not modify the percentage of LB1(+), A2B5(+) and O4(+) cells. In purified cerebellar oligodendrocyte progenitor cells, glutamate receptor agonists blocked K+ currents, and inhibited cell proliferation and lineage progression. The K+ channel blocker tetraethylammonium also inhibited oligodendrocyte progenitor cell proliferation. These findings indicate that in rat cerebellar tissue slices: (i) glutamate specifically modulates oligodendrocyte but not astrocyte development through selective activation of alpha -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and (ii) cell depolarization and blockage of voltage-dependent K+ channels is likely to be the triggering mechanism.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
112 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献