A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices

Author:

Yuan X.1,Eisen A.M.1,McBain C.J.1,Gallo V.1

Affiliation:

1. Laboratory of Cellular and Molecular Neurophysiology, NICHD, NIH, Bethesda, MD 20892-4495, USA.

Abstract

We tested the hypothesis that the neurotransmitter glutamate would influence glial proliferation and differentiation in a cytoarchitecturally intact system. Postnatal day 6 cerebellar slices were maintained in organotypic culture and treated with glutamate receptor agonists or antagonists. After dissociation, cells were stained with antibodies for different oligodendrocyte developmentally regulated antigens. Treatment of the slices with the glutamate receptor agonists kainate or alpha -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid significantly decreased the percentage of LB1(+), NG2(+) and O4(+) cells, and their bromodeoxyuridine labeling index. The non-N-methyl-D-aspartate glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione increased the percentage and bromodeoxyuridine labeling of LB1(+), NG2(+) and O4(+) cells. In intact slices, RNA levels of the oligodendrocyte gene for 2′,3′-cyclic nucleotide 3′-phosphodiesterase were decreased by kainate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and increased by 6,7-dinitroquinoxaline-2,3-dione. The percentage of astrocytes was not modified by kainate, alpha -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or 6, 7-dinitroquinoxaline-2,3-dione. Treatment with the N-methyl-D-aspartate receptor antagonist 2-amino-5-phosphonopentanoic acid did not alter the percentage of O4(+) cells, nor their proliferation. Incubation with the gamma-aminobutyric acid receptor antagonist bicuculline did not modify the percentage of LB1(+), A2B5(+) and O4(+) cells. In purified cerebellar oligodendrocyte progenitor cells, glutamate receptor agonists blocked K+ currents, and inhibited cell proliferation and lineage progression. The K+ channel blocker tetraethylammonium also inhibited oligodendrocyte progenitor cell proliferation. These findings indicate that in rat cerebellar tissue slices: (i) glutamate specifically modulates oligodendrocyte but not astrocyte development through selective activation of alpha -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, and (ii) cell depolarization and blockage of voltage-dependent K+ channels is likely to be the triggering mechanism.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3