Control of floral homeotic gene expression and organ morphogenesis in Antirrhinum

Author:

McSteen P.C.1,Vincent C.A.1,Doyle S.1,Carpenter R.1,Coen E.S.1

Affiliation:

1. Department of Genetics, John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK.

Abstract

The development of reproductive organs in Antirrhinum depends on the expression of an organ identity gene, plena, in the central domain of the floral meristem. To investigate the mechanism by which plena is regulated, we have characterised three mutants in which the pattern of plena expression is altered. In polypetala mutants, expression of plena is greatly reduced, resulting in a proliferation of petals in place of reproductive organs. In addition, polypetala mutants exhibit an altered pattern of floral organ initiation, quite unlike that seen in loss-of-function plena mutants. This suggests that polypetala normally has two roles in flower development: regulation of plena and control of organ primordia formation. In fistulata mutants, plena is ectopically expressed in the distal domain of petal primordia, resulting in the production of anther-like tissue in place of petal lobes. Flowers of fistulata mutants also show a reduced rate of petal lobe growth, even in a plena mutant background. This implies that fistulata normally has two roles in the distal domain of petal primordia: inhibition of plena expression and promotion of lobe growth. A weak allele of the floral meristem identity gene, floricaula, greatly enhances the effect of fistulata on plena expression, showing that floricaula also plays a role in repression of plena in outer whorls. Taken together, these results show that genes involved in plena regulation have additional roles in the formation of organs, perhaps reflecting underlying mechanisms for coupling homeotic gene expression to morphogenesis.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3