Regulation in the heart field of zebrafish

Author:

Serbedzija G.N.1,Chen J.N.1,Fishman M.C.1

Affiliation:

1. Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129-2060, USA.

Abstract

In many vertebrates, removal of early embryonic heart precursors can be repaired, leaving the heart and embryo without visible deficit. One possibility is that this ‘regulation’ involves a cell fate switch whereby cells, perhaps in regions surrounding normal progenitors, are redirected to the heart cell fate. However, the lineage and spatial relationships between cells that are normal heart progenitors and those that can assume that role after injury are not known, nor are their molecular distinctions. We have adapted a laser-activated technique to label single or small patches of cells in the lateral plate mesoderm of the zebrafish and to track their subsequent lineage. We find that the heart precursor cells are clustered in a region adjacent to the prechordal plate, just anterior to the notochord tip. Complete unilateral ablation of all heart precursors with a laser does not disrupt heart development, if performed before the 18-somite stage. By combining extirpation of the heart precursors with cell labeling, we find that cells anterior to the normal cardiogenic compartments constitute the source of regulatory cells that compensate for the loss of the progenitors. One of the earliest embryonic markers of the premyocardial cells is the divergent homeodomain gene, Nkx2.5. Interestingly, normal cardiogenic progenitors derive from only the anterior half of the Nkx2.5-expressing region in the lateral plate mesoderm. The posterior half, adjacent to the notochord, does not include cardiac progenitors and the posterior Nkx2.5-expressing cells do not contribute to the heart, even after ablation of the normal cardiogenic region. The cells that can acquire a cardiac cell fate after injury to the normal progenitors also reside near the prechordal plate, but anterior to the Nkx2.5-expressing domain. Normally they give rise to head mesenchyme. They share with cardiac progenitors early expression of GATA 4. The location of the different elements of the cardiac field, and their response to injury, suggests that the prechordal plate supports and/or the notochord suppresses the cardiac fate.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3