Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis

Author:

Brown N.L.1,Kanekar S.1,Vetter M.L.1,Tucker P.K.1,Gemza D.L.1,Glaser T.1

Affiliation:

1. Howard Hughes Medical Institute, Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-0650, USA. naybro@umich.edu.

Abstract

We have identified Math5, a mouse basic helix-loop-helix (bHLH) gene that is closely related to Drosophila atonal and Xenopus Xath5 and is largely restricted to the developing eye. Math5 retinal expression precedes differentiation of the first neurons and persists within progenitor cells until after birth. To position Math5 in a hierarchy of retinal development, we compared Math5 and Hes1 expression in wild-type and Pax6-deficient (Sey) embryos. Math5 expression is downregulated in Sey/+ eyes and abolished in Sey/Sey eye rudiments, whereas the bHLH gene Hes1 is upregulated in a similar dose-dependent manner. These results link Pax6 to the process of retinal neurogenesis and provide the first molecular correlate for the dosage-sensitivity of the Pax6 phenotype. During retinogenesis, Math5 is expressed significantly before NeuroD, Ngn2 or Mash1. To test whether these bHLH genes influence the fates of distinct classes of retinal neurons, we ectopically expressed Math5 and Mash1 in Xenopus retinal progenitors. Unexpectedly, lipofection of either mouse gene into the frog retina caused an increase in differentiated bipolar cells. Directed expression of Math5, but not Xath5, in Xenopus blastomeres produced an expanded retinal phenotype. We propose that Math5 acts as a proneural gene, but has properties different from its most closely related vertebrate family member, Xath5.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3