Microtubules and associated microfilaments in the tentacles of the suctorian Heliophrya erhardi Matthes

Author:

Hauser M.,Van Eys H.

Abstract

At the ultrastructural level length changes accompanying linear movements of resting (non-feeding) tentacles of the suctorian Heliophrya involve not only altered microtubule numbers, but also marked changes in the specific microtubule pattern of cross-sectioned tentacles. These changes in number and pattern indicate a sliding between axonemal microtubules. The visualization of microfilaments in the cytoplasm at the tentacle base and in the knob region could shed new light on the problem of whether microtubular sliding is an active or passive process. At the tentacle base, microfilaments are either arranged in a ring-shaped configuration around the axoneme, or they run parallel to the axonemal microtubules, whereas at the tentacle tip during the resting state, microfilaments are closely associated with the plasma membrane of the knob. They form a filamentous reticular layer, which is continuous at the anchorage site of axonemal microtubules with the dense epiplasmic layer of the tentacle shaft. Obiously, this filamentous layer is engaged in positioning the haptocysts at the plasma membrane and in holding the membrane itself under tension. The putative contractile nature of microfilaments and the epiplasmic layer is argued from ATP-sensitive glycerol models of tentacles and from the results of halothane treatment of native tentacles. Halothane treatment of resting tentacles also gave indications of the presence of differentially stable intermicrotubule-bridges. The role of micro-filaments and halothane-resistant dynein-like inter-row bridges in tentacle movement is discussed. As soon as the plasma membrane of the knob is ‘sealed’ with the prey pellicle during feeding, the microtubules of the sleeve region slide into the knob where they bend back and outwards. The microtubules now appear decorated and sometimes cross-connected by microfilaments which adhere closely to the plasma membrane- now acting as a peritrophic membrane-lining the prey cytoplasm against the microtubules of the inner tube. These microfilaments which show a close association with the microtubules of the active knob area, are thought to be engaged in microtubular bending and stretching during feeding. They may also be involved in the transport of the peritrophic membrane in distal tentacle regions. Microinematographically recorded oscillations in tentacle diameter in these regions are in agreement with the electron-microscopic findings of various states of collapsed tentacle axonemes. These observations, as well as the occurrence of helically twisted tentacles during feeding, suggest microfilament mediated sequential back and forth movements of sleeve microtubules in the knob region which generate a proximally migrating helical wave.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3