Evolution of supercontraction in spider silk: structure–function relationship from tarantulas to orb-weavers

Author:

Boutry Cecilia1,Blackledge Todd Alan1

Affiliation:

1. Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325-3908, USA

Abstract

SUMMARY Spider silk is a promising biomaterial with impressive performance. However, some spider silks also ‘supercontract’ when exposed to water, shrinking by up to ∼50% in length. Supercontraction may provide a critical mechanism to tailor silk properties, both for future synthetic silk production and by the spiders themselves. Several hypotheses are proposed for the mechanism and function of supercontraction, but they remain largely untested. In particular, supercontraction may result from a rearrangement of the GPGXX motif within the silk proteins, where G represents glycine, P proline and X is one of a small subset of amino acids. Supercontraction may prevent sagging in wet orb-webs or allow spiders to tailor silk properties for different ecological functions. Because both the molecular structures of silk proteins and how dragline is used in webs differ among species, we can test these hypotheses by comparing supercontraction of silk across diverse spider taxa. In this study we measured supercontraction in 28 spider taxa, ranging from tarantulas to orb-weaving spiders. We found that silk from all species supercontracted, except that of most tarantulas. This suggests that supercontraction evolved at least with the origin of the Araneomorphae, over 200 million years ago. We found differences in the pattern of evolution for two components of supercontraction. Stress generated during supercontraction of a restrained fiber is not associated with changes in silk structure and web architecture. By contrast, the shrink of unrestrained supercontracting fibers is higher for Orbiculariae spiders, whose silk contains high ratios of GPGXX motifs. These results support the hypothesis that supercontraction is caused by a rearrangement of GPGXX motifs in silk, and that it functions to tailor silk material properties.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3