Bpag1 localization to actin filaments and to the nucleus is regulated by its N-terminus

Author:

Young Kevin G.1,Pool Madeline1,Kothary Rashmi1

Affiliation:

1. Ottawa Health Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6 The University of Ottawa Center for Neuromuscular Disease, Ottawa, Ontario, Canada K1H 8M5 Department of Cellular and Molecular Medicine, and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5

Abstract

Plakins are a family of giant cytoskeleton binding proteins. One member of this group is bullous pemphigoid antigen 1 (Bpag1)/dystonin, which has neuronal and muscle isoforms that consist of actin-binding and microtubule-binding domains at either end separated by a plakin domain and several spectrin repeats. The better-characterized epithelial isoform has only the plakin domain in common with the neuronal and muscle isoforms. Here, we have analyzed the localization of muscle/neuronal (Bpag1a/b) isoforms and the epithelial (Bpag1e) isoform within C2C12 myoblast cells. Although an antibody specific to Bpag1a/b isoform 2 detected protein co-aligning actin stress fibers, this same antibody and two Bpag1e antibodies predominantly detected protein in the nuclei. A Bpag1a/b isoform 2 N-terminal fusion protein containing the plakin domain also localized to actin stress fibers and to nuclei. Within the plakin domain, we characterized a functional nuclear localization signal, which was responsible for localization of the fusion protein to the nucleus. Bpag1a/b isoform 1 N-terminal fusion proteins differed in their interaction with the actin cytoskeleton and with their ability to localize to the nucleus, suggesting that Bpag1 isoforms with different N-termini have differing roles. These results show the importance of N-terminal domains in dictating the localization and function of Bpag1 isoforms. We provide the first indication that Bpag1 is not strictly a cytoplasmic/membrane protein but that it can also localize to the nucleus.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3