Refuging rainbow trout selectively exploit flows behind tandem cylinders

Author:

Stewart William J.1,Tian Fang-bao2,Akanyeti Otar1,Walker Christina J.1,Liao James C.1ORCID

Affiliation:

1. Department of Biology, Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA

2. School of Engineering and Information Technology, University of New South Wales, Canberra, Australian Capital Territory 2610, Australia

Abstract

ABSTRACT Fishes may exploit environmental vortices to save in the cost of locomotion. Previous work has investigated fish refuging behind a single cylinder in current, a behavior termed the Kármán gait. However, current-swept habitats often contain aggregations of physical objects, and it is unclear how the complex hydrodynamics shed from multiple structures affect refuging in fish. To begin to address this, we investigated how the flow fields produced by two D-shaped cylinders arranged in tandem affect the ability of rainbow trout (Oncorhynchus mykiss) to Kármán gait. We altered the spacing of the two cylinders from l/D of 0.7 to 2.7 (where l=downstream spacing of cylinders and D=cylinder diameter) and recorded the kinematics of trout swimming behind the cylinders with high-speed video at Re=10,000–55,000. Digital particle image velocimetry showed that increasing l/D decreased the strength of the vortex street by an average of 53% and decreased the frequency that vortices were shed by ∼20% for all speeds. Trout were able to Kármán gait behind all cylinder treatments despite these differences in the downstream wake; however, they Kármán gaited over twice as often behind closely spaced cylinders (l/D=0.7, 1.1, and 1.5). Computational fluid dynamics simulations show that when cylinders are widely spaced, the upstream cylinder generates a vortex street that interacts destructively with the downstream cylinder, producing weaker, more widely spaced and less-organized vortices that discourage Kármán gaiting. These findings are poised to help predict when fish may seek refuge in natural habitats based on the position and arrangement of stationary objects.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3