Extremely high-power tongue projection in plethodontid salamanders

Author:

Deban Stephen M.1,O'Reilly James C.2,Dicke Ursula3,van Leeuwen Johan L.4

Affiliation:

1. Department of Biology, 4202 East Fowler Avenue, SCA 110, University of South Florida, Tampa, FL 33620, USA

2. Department of Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street, Chicago, IL 60637, USA

3. Brain Research Institute, University of Bremen, 28334 Bremen,Germany

4. Experimental Zoology Group, Wageningen Institute of Animal Sciences(WIAS), Wageningen University, Marijkeweg 40, 6709 PG Wageningen, The Netherlands

Abstract

SUMMARYMany plethodontid salamanders project their tongues ballistically at high speed and for relatively great distances. Capturing evasive prey relies on the tongue reaching the target in minimum time, therefore it is expected that power production, or the rate of energy release, is maximized during tongue launch. We examined the dynamics of tongue projection in three genera of plethodontids (Bolitoglossa, Hydromantes and Eurycea), representing three independent evolutionary transitions to ballistic tongue projection, by using a combination of high speed imaging,kinematic and inverse dynamics analyses and electromyographic recordings from the tongue projector muscle. All three taxa require high-power output of the paired tongue projector muscles to produce the observed kinematics. Required power output peaks in Bolitoglossa at values that exceed the greatest maximum instantaneous power output of vertebrate muscle that has been reported by more than an order of magnitude. The high-power requirements are likely produced through the elastic storage and recovery of muscular kinetic energy. Tongue projector muscle activity precedes the departure of the tongue from the mouth by an average of 117 ms in Bolitoglossa, sufficient time to load the collagenous aponeuroses within the projector muscle with potential energy that is subsequently released at a faster rate during tongue launch.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3