Cross generation plasticity in cold hardiness is associated with diapause, but not the non-diapause developmental pathway, in the blowfly, Calliphora vicina

Author:

Coleman Paul C.1,Bale Jeffrey S.1,Hayward Scott A. L.1

Affiliation:

1. University of Birmingham, United Kingdom

Abstract

Summary Predicting insect responses to global climate change involves understanding cross generation effects of temperature. The majority of temperate insects overwinter in a state of diapause, a pre-emptive response to winter conditions associated with increased cold hardiness. Diapause is often induced following maternal adult detection of an environmental cue signifying the onset of winter, whilst diapause is initiated in a subsequent life-stage/generation. Continued global warming will expose adults to higher late-autumn temperatures, whilst diapause life-stages will still experience prolonged winter-cold. The cross generation effect of temperature was investigated by acclimating adult Calliphora vicina, to present day (15°C) and future (20°C) late-autumn conditions and assessing cold-hardiness in diapause (D15 and D20) and non-diapause (ND15 and ND 20) progeny. A cross generation plasticity in cold hardiness was associated with D but not ND larvae. D15 larvae exhibited an enhanced ability to suppress the internal freezing (SCP = -18.9±0.9°C) compared to D20 (-15.3±0.8°C), and displayed a greater tolerance of prolonged exposure to -4°C (LT50 26.0± 1.0 days and 11.4±1.1 days, respectively) and -8°C (5.1±1.1 days and 3.0 ±1.1 days, respectively). These changes were associated with a reduced glucose content in D15 (2.4±0.3 g mg-1) compared to D20 (3.0±0.3 g mg-1) larvae. In conclusion, C. vicina adults exposed to warmer autumn conditions during diapause induction will produce larvae with a reduced cold hardiness capacity, which could negatively impact winter survival. Given that maternal regulation of diapause is common among temperate insects this could be a widespread phenomenon.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference89 articles.

1. Temperature-related shifts in butterfly phenology depend on the habitat;Altermatt;Glob. Change Biol.,2012

2. Insect fat body: energy, metabolism, and regulation;Arrese;Annu. Rev. Entomol.,2010

3. Insect cold hardiness: freezing and supercooling – an ecophysiological perspective;Bale;J. Insect Physiol.,1987

4. Insect cold hardiness: a matter of life and death;Bale;Eur. J. Entomol.,1996

5. Insects and low temperatures: from molecular biology to distributions and abundance;Bale;Philos. Trans. R. Soc. B,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3