RABL2 positively controls localization of GPCRs in mammalian primary cilia

Author:

Dateyama Izumi1,Sugihara Yoshihiro1,Chiba Shuhei2,Ota Reo1,Nakagawa Risa1,Kobayashi Tetsuo1ORCID,Itoh Hiroshi1

Affiliation:

1. Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan

2. Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3 Abeno, Osaka, 545-8585, Japan

Abstract

Primary cilium, a solitary protrusion from most mammalian cells, functions as a cell's sensor by receiving extra-cellular signals through receptors and channels accumulated in the organelle. Certain G-protein coupled receptors (GPCRs) specifically localize to membrane compartment of the primary cilia. To gain insight into the mechanisms that regulate ciliary GPCR sorting, we investigated an atypical small GTPase RAB-like 2 (RABL2). RABL2 recruitment to the mother centriole is dependent on distal appendage proteins, CEP164 and CEP83. We found that silencing of RABL2 causes mis-targeting of ciliary GPCRs, GPR161 and HTR6, whereas overexpression of RABL2 resulted in accumulation of these receptors in the organelle. Ablation of CEP19 and IFT-B, which interact with RABL2, also lead to mis-localization of GPR161. RABL2 controls localization of GPR161 independently of TULP3, which promotes entry of ciliary GPCRs. We further demonstrated that RABL2 physically associates with ciliary GPCRs. Altogether, these studies suggest that RABL2 plays an important role in trafficking of ciliary GPCRs at the ciliary base in mammalian cells.

Funder

Japan Society for the Promotion of Science

Takeda Science Foundation

Kurata Memorial Hitachi Science and Technology Foundation

Daiichi Sankyo Foundation of Life Science

Mochida Memorial Foundation for Medical and Pharmaceutical Research

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3