Allometry of kinematics and energetics in carpenter bees (Xylocopa varipuncta)hovering in variable-density gases

Author:

Roberts Stephen P.1,Harrison Jon F.2,Dudley Robert34

Affiliation:

1. Department of Biological Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4004, USA

2. School of Life Sciences, Arizona State University, Tempe, AZ 85287-1501,USA

3. Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA

4. Smithsonian Tropical Research Institute, PO Box 2072, Balboa, Republic of Panama

Abstract

SUMMARYWe assessed the energetic and aerodynamic limits of hovering flight in the carpenter bee Xylocopa varipuncta. Using normoxic, variable-density mixtures of O2, N2 and He, we were able to elicit maximal hovering performance and aerodynamic failure in the majority of bees sampled. Bees were not isometric regarding thorax mass and wing area, both of which were disproportionately lower in heavier individuals. The minimal gas density necessary for hovering (MGD) increased with body mass and decreased with relative thoracic muscle mass. Only the four bees in our sample with the highest body mass-specific thorax masses were able to hover in pure heliox. Wingbeat frequency and stroke amplitude during maximal hovering were significantly greater than in normodense hovering, increased significantly with body mass during normodense hovering but were mass independent during maximal hovering. Reserve capacity for wingbeat frequency and stroke amplitude decreased significantly with increasing body mass, although reserve capacity in stroke amplitude (10–30%) exceeded that of wingbeat frequency(0–8%). Stroke plane angle during normodense hovering was significantly greater than during maximal hovering, whereas body angle was significantly greater during maximal hovering than during normodense hovering. Power production during normodense hovering was significantly less than during maximal hovering. Metabolic rates were significantly greater during maximal hovering than during normodense hovering and were inversely related to body mass during maximal and normodense hovering. Metabolic reserve capacity averaged 34% and was independent of body mass. Muscle efficiencies were slightly higher during normodense hovering. The allometry of power production,power reserve capacity and muscle efficiency were dependent on the assumed coefficient of drag (CD), with significant allometries most often at lower values of CD. Larger bees operate near the envelope of maximal performance even in normodense hovering due to smaller body mass-specific flight muscles and limited reserve capacities for kinematics and power production.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3