The anterior cardiac plexus: an intrinsic neurosecretory site within the stomatogastric nervous system of the crabCancer productus

Author:

Christie Andrew E.12,Cain Shaun D.2,Edwards John M.12,Clason Todd A.1,Cherny Elena1,Lin Minhui2,Manhas Amitoz S.2,Sellereit Kirsten L.2,Cowan Nicholas G.2,Nold Kellen A.2,Strassburg Hans-Peter2,Graubard Katherine12

Affiliation:

1. Department of Biology, University of Washington, Box 351800, Seattle,Washington 98195-1800 USA

2. Friday Harbor Laboratories, University of Washington, 620 University Road,Friday Harbor, Washington 98250 USA

Abstract

SUMMARYThe stomatogastric nervous system (STNS) of decapod crustaceans is modulated by both locally released and circulating substances. In some species, including chelate lobsters and freshwater crayfish, the release zones for hormones are located both intrinsically to and at some distance from the STNS. In other crustaceans, including Brachyuran crabs, the existence of extrinsic sites is well documented. Little, however, is known about the presence of intrinsic neuroendocrine structures in these animals. Putative intrinsic sites have been identified within the STNS of several crab species,though ultrastructural confirmation that these structures are in fact neuroendocrine in nature remains lacking. Using a combination of anatomical techniques, we demonstrate the existence of a pair of neurosecretory sites within the STNS of the crab Cancer productus. These structures, which we have named the anterior cardiac plexi (ACPs), are located on the anterior cardiac nerves (acns), which overlie the cardiac sac region of the foregut. Each ACP starts several hundred μm from the origin of the acn and extends distally for up to several mm. Transmission electron microscopy done on these structures shows that nerve terminals are present in the peripheral portion of each acn, just below a well defined epineurium. These terminals contain dense-core and, occasionally,electron-lucent vesicles. In many terminals, morphological correlates of hormone secretion are evident. Immunocytochemistry shows that the ACPs are immunopositive for FLRFamide-related peptide. All FLRFamide labeling in the ACPs originates from four axons, which descend to these sites through the superior oesophageal and stomatogastric nerves. Moreover, these FLRFamide-immunopositive axons are the sole source of innervation to the ACPs. Collectively, our results suggest that the STNS of C. productus is not only a potential target site for circulating hormones, but also serves as a neuroendocrine release center itself.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3