Navigational strategies underlying temporal phototaxis in Drosophila larvae

Author:

Zhu Maxwell L.12ORCID,Herrera Kristian J.2ORCID,Vogt Katrin13ORCID,Bahl Armin234ORCID

Affiliation:

1. Department of Physics, Harvard University, Cambridge, MA 02138, USA

2. Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA

3. Department of Biology, University of Konstanz, 78464Konstanz, Germany

4. Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany

Abstract

ABSTRACT Navigating across light gradients is essential for survival for many animals. However, we still have a poor understanding of the algorithms that underlie such behaviors. Here, we developed a novel closed-loop phototaxis assay for Drosophila larvae in which light intensity is always spatially uniform but updates depending on the location of the animal in the arena. Even though larvae can only rely on temporal cues during runs, we find that they are capable of finding preferred areas of low light intensity. Further detailed analysis of their behavior reveals that larvae turn more frequently and that heading angle changes increase when they experience brightness increments over extended periods of time. We suggest that temporal integration of brightness change during runs is an important – and so far largely unexplored – element of phototaxis.

Funder

Harvard Mind Brain Behavior Initiative

German Science Foundation

Human Frontier Science Program

Zukunftskolleg Konstanz

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3