Optical influence of oil droplets on cone photoreceptor sensitivity

Author:

Wilby David1ORCID,Roberts Nicholas W.1

Affiliation:

1. Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol. BS8 1TQ. United Kingdom

Abstract

Oil droplets are spherical organelles found in the cone photoreceptors of vertebrates. They are generally assumed to focus incident light into the outer segment, and thereby improve light catch because of the droplets' spherical lens-like shape. However, using full-wave optical simulations of physiologically realistic cone photoreceptors from birds, frogs and turtles we find that pigmented oil droplets actually drastically reduce the transmission of light into the outer segment integrated across the full visible wavelength range of each species. Only transparent oil droplets improve light catch into the outer segments, and any enhancement is critically dependent on the refractive index, diameter of the oil droplet, and diameter and length of the outer segment. Furthermore, oil droplets are not the only optical elements found in cone inner segments. The ellipsoid, a dense aggregation of mitochondria situated immediately prior to the oil droplet, mitigates the loss of light at oil droplet surface. We describe a framework for integrating these optical phenomena into simple models of receptor sensitivity and the relevance of these observations to evolutionary appearance and loss of oil droplets is discussed.

Funder

Human Frontier Science Program

Engineering and Physical Sciences Research Council

Leverhulme Trust

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference37 articles.

1. Principles of Optics

2. Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds;Bowmaker;Vision Res.,1997

3. Use of the waveguide parameter V to determine the difference in the index of refraction between the rat rod outer segment and the interstitial matrix;Enoch;J. Opt. Soc. Am.,1978

4. Role of cellular organoids in photoreceptor optics (studies on microwave models);Govardovskiì;Zh. Evol. Biokhim. Fiziol.,1981

5. The visual ecology of avian cone photoreceptors;Hart;Prog. Retin. Eye. Res.,2001

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3