Multiple sensory modalities used by squid in successful predator evasion throughout ontogeny

Author:

York Carly A.1ORCID,Bartol Ian K.1,Krueger Paul S.2

Affiliation:

1. Department of Biology, Old Dominion University, Norfolk, VA 23529, USA

2. Department of Mechanical Engineering, Southern Methodist University, Dallas, TX 75275, USA

Abstract

Squid rely on multiple sensory systems for predator detection. In this study we examine the role of two sensory systems, the lateral line analogue and vision, in successful predator evasion throughout ontogeny. Squid Doryteuthis pealeii and Lolliguncula brevis were recorded using high-speed videography in the presence of natural predators under light and dark conditions with their lateral line analogue intact and ablated via a pharmacological technique. Paralarval squid showed reduced escape responses when ablated; however, no differences were found between light and dark conditions, as was previously shown in juveniles and adults, indicating that the lateral line analogue is integral for predator detection early in life. Vision does play a role in survival as ablated squid in dark conditions had lower survivorship than all other treatments. Throughout ontogeny, squid oriented themselves anteriorly towards the oncoming predator, maximizing sensory input to the lateral line analogue system and providing better positioning for tail-first escape jetting, the preferred escape mode. Ablated juveniles and adults had lower response times, escape velocities and peak acceleration than non-ablated individuals, indicating that the lateral line analogue enables squid to respond quicker and with more powerful jets to a predator and maximize escape success. Our findings reveal that the lateral line analogue plays a role in predator detection and successful escape response at the earliest life stages, and continues to contribute to successful evasion by aiding visual cues in juvenile and adult squid.

Funder

National Science Foundation

Society of Integrative and Comparative Biology Grant-in-Aid of Research

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3