Effects of temperature on maximum acceleration, deceleration and power output during vertical running in geckos

Author:

Bergmann Phillip1,Irschick Duncan J.1

Affiliation:

1. Department of Ecology and Evolutionary Biology, 310 Dinwiddie Hall,Tulane University, New Orleans, LA 70118, USA

Abstract

SUMMARYWe studied performance and kinematics of the diurnal gekkonid lizard Phelsuma dubia while running vertically on a smooth surface at different temperatures. Trials were conducted at 5°C intervals from 15°C to 35°C. High-speed video recordings and digitization were used to obtain measures of instantaneous velocity, acceleration, deceleration and mass-specific power output and maximal values for each were taken as performance measures. Kinematic variables were also obtained from high-speed video recordings and included stride length and duration, step (stance phase)length and duration, and duty factor. Maximal instantaneous velocity,acceleration and deceleration increased by a factor of approximately 1.7 between 15°C and 25°C, and less so (∼1.2×) between 25°C and 35°C. Mass-specific power output was more temperature-sensitive,increasing 2.5× up to 25°C and a further 1.4× above that temperature. Stride length increased 1.5× over the entire temperature interval studied, while stride duration decreased by a factor of 1.9,suggesting that velocity is modulated by changes in both stride length and duration in P. dubia. Duty factor was not significantly influenced by temperature. Stride length was the only kinematic measure to be influenced by stride number, with second steps from a standstill being longer than first steps. We discuss the significance of velocity and acceleration being affected in a similar manner by temperature, and that speed is modulated by both changes in stride length and duration.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3