Preliminary characterization of two atypical soluble guanylyl cyclases in the central and peripheral nervous system ofDrosophila melanogaster

Author:

Langlais Kristofor K.1,Stewart Judith A.1,Morton David B.1

Affiliation:

1. Departments of Integrative Biosciences and Cell and Developmental Biology, Oregon Health Sciences University, Portland, OR 97239, USA

Abstract

SUMMARYConventional soluble guanylyl cyclases form α/β heterodimers that are activated by nitric oxide (NO). Recently, atypical members of the soluble guanylyl cyclase family have been described that include the ratβ2 subunit and MsGC-β3 from Manduca sexta. Predictions from the Drosophila melanogaster genome identify three atypical guanylyl cyclase subunits: Gyc-88E (formerly CG4154), Gyc-89Da (formerly CG14885) and Gyc-89Db (formerly CG14886). Preliminary data showed that transient expression of Gyc-88E in heterologous cells generated enzyme activity in the absence of additional subunits that was slightly stimulated by the NO donor sodium nitroprusside (SNP) but not the NO donor DEA-NONOate or the NO-independent activator YC-1. Gyc-89Db was inactive when expressed alone but when co-expressed with Gyc-88E enhanced the basal and SNP-stimulated activity of Gyc-88E, suggesting that they may form heterodimers in vivo. Here,we describe the localization of Gyc-88E and Gyc-89Db and show that they are expressed in the embryonic and larval central nervous systems and are colocalized in several peripheral neurons that innervate trachea, basiconical sensilla and the sensory cones in the posterior segments of the embryo. We also show that there are two splice variants of Gyc-88E that differ by seven amino acids, although no differences in biochemical properties could be determined. We have also extended our analysis of the NO activation of Gyc-88E and Gyc-89Db, showing that several structurally unrelated NO donors activate Gyc-88E when expressed alone or when co-expressed with Gyc-89Db.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3