Heating rates are more strongly influenced by near-infrared than visible reflectance in beetles

Author:

Wang Lu-Yi1ORCID,Franklin Amanda M.1ORCID,Black Jay R.2ORCID,Stuart-Fox Devi1ORCID

Affiliation:

1. School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia

2. School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia

Abstract

ABSTRACT Adaptations to control heat transfer through the integument are a key component of temperature regulation in animals. However, there remain significant gaps in our understanding of how different optical and morphological properties of the integument affect heating rates. To address these gaps, we examined the effect of reflectivity in both ultraviolet–visible and near-infrared wavelengths, surface rugosity (roughness), effective area (area subjected to illumination) and cuticle thickness on radiative heat gain in jewel beetles (Buprestidae). We measured heating rate using a solar simulator to mimic natural sunlight, a thermal chamber to control the effects of conduction and convection, and optical filters to isolate different wavelengths. We found that effective area and reflectivity predicted heating rate. The thermal effect of reflectivity was driven by variation in near-infrared rather than ultraviolet–visible reflectivity. By contrast, cuticle thickness and surface rugosity had no detectable effect. Our results provide empirical evidence that near-infrared reflectivity has an important effect on radiative heat gain. Modulating reflectance of near-infrared wavelengths of light may be a more widespread adaptation to control heat gain than previously appreciated.

Funder

Australian Research Council

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3