Affiliation:
1. Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada, K1S 5B6
Abstract
The roles of hormones, second messengers and pH in triggering or potentiating biochemical responses to anaerobiosis were evaluated using in vitro incubations of isolated muscle tissues (foot, radular retractor, ventricle) from the marine whelk Busycon canaliculatum (L.). Incubating tissues in vitro under anoxic conditions stimulated changes in muscle fmctose-2,6-bisphosphate levels and pyruvate kinase kinetics (Km values for phosphoenolpyruvate, I50 values for L-alanine) that were virtually equivalent to those that occur in vivo. Additions of hormones (epinephrine, norepinephrine, octopamine, serotonin, glucagon, insulin) or inhibitors of prostaglandin synthesis (dexamethasone, aspirin) had no effect on these metabolic responses to anoxia. The second messenger compounds, dibutyryl cyclic AMP and Ca2+ + ionophore A23187 + phorbol myristate acetate, produced isolated and tissue-specific responses in muscles incubated under aerobic conditions, but the magnitude and pattern of these responses differed from those seen in anoxia. Second messengers also had no effect on the development of biochemical responses in anoxic muscles. Tissue pH was artificially altered in order to evaluate the role of pH change (acidification occurs during anoxia in vivo) in the control of metabolic responses to anoxia. In all cases, the changes in the kinetic properties of pyruvate kinase (PK) correlated with the state of oxygenation of the tissue and not with the measured tissue pH value; higher tissue pH did not prevent anoxiainduced phosphorylation of PK and lower tissue pH did not alter the kinetic patterns of the aerobic enzyme. Overall, the study indicates that cells and tissues of the whelk respond individually to anoxia and that coordination of the action of protein kinases during anoxia is not mediated by pH or by common secondmessenger mechanisms.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献