Integration of ultrasound and flight inputs on descending neurons in the cricket brain

Author:

Brodfuehrer P. D.1,Hoy R. R.1

Affiliation:

1. Section of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853.

Abstract

In response to ultrasonic stimuli, tethered flying crickets perform evasive steering movements that are directed away from the sound source (negative phonotaxis). In this study we have investigated the responsiveness to ultrasound of neurons that descend from the cricket brain, and whether flight activity facilitates the responsiveness of these neurons. 1. Ultrasonic stimuli evoke descending activity in the cervical connectives both ipsilateral and contralateral to the sound source. 2. Both the amount of descending activity and the latency of this response in the cervical connectives are linearly correlated with ultrasonic stimulus intensity, regardless of the cricket's behavioral state. 3. Flight activity significantly increases the amount of descending activity evoked by ultrasound at all stimulus intensities, and significantly decreases the latency of the response in the cervical connectives compared with non-flying crickets. Flight activity, however, does not significantly affect the activity in an interneuron (Int-1) carrying ultrasound input to the brain. Thus, the increase in the amount of descending activity produced during flight activity is due to the integration of input from Int-1 and the flight motor system to ultrasound-sensitive neurons in the cricket brain. 4. Descending units recorded in the cervical connectives originate in the cricket brain. A reduction in the amount of descending activity is correlated with a decrease in the magnitude of the negative phonotactic response of the abdomen during flight activity, suggesting that these descending units play a role in eliciting negative phonotaxis.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3