Peripheral modulation of pheromone response by inhibitory host compound in a beetle

Author:

Andersson Martin N.1,Larsson Mattias C.1,Blaženec Miroslav2,Jakuš Rastislav2,Zhang Qing-He1,Schlyter Fredrik1

Affiliation:

1. Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden

2. Institute of Forest Ecology, Slovak Academy of Sciences, 960 53, Zvolen, Slovakia

Abstract

SUMMARY We identified several compounds, by gas chromatographic–electroantennographic detection (GC–EAD), that were antennally active in the bark beetle Ips typographus and also abundant in beetle-attacked spruce trees. One of them, 1,8-cineole (Ci), strongly inhibited the attraction to pheromone in the field. Single-sensillum recordings (SSRs) previously showed olfactory receptor neurons (ORNs) on I. typographus antennae selectively responding to Ci. All Ci neurons were found within sensilla co-inhabited by a pheromone neuron responding to cis-verbenol (cV); however, in other sensilla, the cV neuron was paired with a neuron not responding to any test odorant. We hypothesized that the colocalization of ORNs had a functional and ecological relevance. We show by SSR that Ci inhibited spontaneous activity of the cV neuron only in sensilla in which the Ci neuron was also present. Using mixtures of cV and Ci, we further show that responses to low doses (1–10 ng) of cV were significantly reduced when the colocalized Ci neuron simultaneously responded to high doses (1–10 μg) of Ci. This indicated that the response of the Ci neuron, rather than ligand–receptor interactions in the cV neuron, caused the inhibition. Moreover, cV neurons paired with Ci neurons were more sensitive to cV alone than the ones paired with the non-responding ORN. Our observations question the traditional view that ORNs within a sensillum function as independent units. The colocalization of ORNs might sharpen adaptive responses to blends of semiochemicals with different ecological significance in the olfactory landscape.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3