Presynaptic Depolarization Mediates Presynaptic Inhibition at a Synapse Between An Identified Mechanosensory Neurone and Giant Interneurone 3 in the First Instar Cockroach, Periplaneta Americana

Author:

BLAGBURN JONATHAN M.1,SATTELLE DAVID B.1

Affiliation:

1. AFRC Unit of Insect Neuwphysiology and Pharmacology, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK

Abstract

Intracellular microelectrodes were used to study presynaptic inhibition at a cholinergic synapse between identified neurones: the lateral filiform hair sensory neurone (LFHSN) and giant interneurone 3 (GI3) in the terminal ganglion of the first instar cockroach Periplaneta americana. The LFHSN-GI3 synapse was shown to fulfil physiological criteria for monosynaptic transmission: the latency of the EPSPs was 1.4 ms and was constant during high-frequency firing of LFHSN; transmission was progressively and reversibly abolished by replacement of Ca2+ with Mg2+. Movement of the lateral filiform hair towards the cereal tip produced a burst of spikes in LFHSN and a burst of EPSPs in GI 3. Movement of the medial filiform hair towards the base of the cercus produced a burst of spikes in the medial filiform hair sensory neurone (MFHSN) and a burst of EPSPs in GI 2. EPSPs evoked in GI 3 by LFHSN spikes were inhibited during bursts of EPSPs in GI 2 which were evoked by MFHSN spikes. LFHSN was depolarized and its spikes were reduced in amplitude during spike bursts in MFHSN. Reduction in LFHSN spike amplitude reduced GI 3 EPSPs. This phenomenon was attributed, therefore, to presynaptic inhibition. The occurrence of presynaptic inhibition was dependent upon the degree of delayed rectification exhibited by the LFHSN axon. Hyperpolarization of LFHSN increased spike height, but did not increase the amplitude of GI 3 EPSPs. The delay between the onset of MFHSN-evoked EPSPs in GI 2 and MFHSNevoked depolarizations in LFHSN suggested that MFHSN does not synapse directly onto LFHSN. Neither depolarization nor hyperpolarization of GI 2 had any effect on MFHSN-mediated presynaptic inhibition of LFHSN-GI 3 transmission, therefore it was considered unlikely that GI 2 synapses onto LFHSN. Prolonged hyperpolarization lowered the LFHSN spike threshold and temporarily abolished presynaptic inhibition. Bursts of spikes in LFHSN mediated presynaptic inhibition of MFHSN-GI2 EPSPs. Mutual presynaptic inhibition by the FHSNs may have a functional significance in sharpening the boundaries of the GIs' directional sensitivities.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3