Evolution of the asexual queen succession system and its underlying mechanisms in termites

Author:

Matsuura Kenji1ORCID

Affiliation:

1. Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan

Abstract

ABSTRACT One major advantage of sexual reproduction over asexual reproduction is its promotion of genetic variation, although it reduces the genetic contribution to offspring. Queens of social insects double their contribution to the gene pool, while overuse of asexual reproduction may reduce the ability of the colony to adapt to environmental stress because of the loss of genetic diversity. Recent studies have revealed that queens of some termite species can solve this tradeoff by using parthenogenesis to produce the next generation of queens and sexual reproduction to produce other colony members. This reproductive system, known as asexual queen succession (AQS), has been identified in the subterranean termites Reticulitermes speratus, Reticulitermes virginicus and Reticulitermes lucifugus and in the Neotropical higher termites Embiratermes neotenicus and Cavitermes tuberosus. The studies presented here have uncovered the unusual modes of reproduction in termites and have aimed to identify their underlying mechanisms. The study of AQS, the mixed use of sexual and asexual reproduction, is of fundamental importance as it may provide a key to solve the evolutionary paradox of sex.

Funder

Japan Society for the Promotion of Science

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3