Cardiorespiratory modifications, and limitations, in post-smolt growth hormone transgenic Atlantic salmonSalmo salar

Author:

Deitch E. J.1,Fletcher G. L.1,Petersen L. H.1,Costa I. A. S. F.1,Shears M. A.1,Driedzic W. R.1,Gamperl A. K.1

Affiliation:

1. Ocean Sciences Centre, Memorial University of Newfoundland, St John's, Newfoundland A1C 5S7, Canada

Abstract

SUMMARYIn recent years, there has been a great deal of interest in how growth hormone (GH) transgenesis affects fish physiology. However, the results of these studies are often difficult to interpret because the transgenic and non-transgenic fish had very different environmental/rearing histories. This study used a stable line of size-matched GH Atlantic salmon (Salmo salar) that were reared in a shared tank with controls (at 10°C, for∼9 months) to perform a comprehensive examination of the cardiorespiratory physiology of GH transgenic salmon, and serves as a novel test of the theory of symmorphosis. The GH transgenic salmon had a 3.6× faster growth rate,and 21 and 25% higher values for mass-specific routine and standard oxygen consumption (ṀO2),respectively. However, there was no concurrent increase in their maximum ṀO2, which resulted in them having an 18% lower metabolic scope and a 9% reduction in critical swimming speed. This decreased metabolic capacity/performance was surprising given that the transgenics had a 29% larger heart with an 18% greater mass-specific maximum in situ cardiac output, a 14% greater post-stress blood haemoglobin concentration, 5–10% higher red muscle and heart aerobic enzyme (citrate synthase or cytochrome oxidase) activities, and twofold higher resting and 1.7× higher post-stress, catecholamine levels. However, gill surface area was the only cardiorespiratory parameter that was not enhanced, and our data suggest that gill oxygen transfer may have been limiting. Overall, this research: (1) shows that there are significant metabolic costs associated with GH transgenesis in this line of Atlantic salmon; (2) provides the first direct evidence that cardiac function is enhanced by GH transgenesis; (3) shows that a universal upregulation of post-smolt (adult) GH transgenic salmon cardiorespiratory physiology, as suggested by symmorphosis, does not occur; and (4) supports the idea that whereas differences in arterial oxygen transport (i.e. cardiac output and blood oxygen carrying capacity) are important determinants of inter-specific differences in aerobicity, diffusion-limited processes must be enhanced to achieve substantial intra-specific improvements in metabolic and swimming performance.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3