DrosophilaSwiprosin-1/EFHD2 accumulates at the prefusion complex stage duringDrosophilamyoblast fusion

Author:

Hornbruch-Freitag Christina1,Griemert Barbara1,Buttgereit Detlev1,Renkawitz-Pohl Renate1

Affiliation:

1. Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, 35043 Marburg, Germany

Abstract

In the Drosophila embryo, transient cell adhesion during myoblast fusion is known to lead to the formation of fusion-restricted myogenic-adhesive structures (FuRMASs). Here, we report that within these FuRMASs, a Drosophila homologue of human and mouse swiprosins (EF-hand-domain-containing proteins) is expressed, which we named Drosophila Swiprosin-1 (Drosophila Swip-1). Drosophila Swip-1 is highly conserved and is closely related to the calcium-binding proteins swiprosin-1 and swiprosin-2 that have a role in the immune system in humans and mice. Our study shows that Drosophila Swip-1 is also expressed in corresponding cells of the Drosophila immune system. During myoblast fusion, Drosophila Swip-1 accumulates transiently in the foci of fusion-competent myoblasts (FCMs). Both the EF-hand and the coiled-coil domain of Drosophila Swip-1 are required to localise the protein to these foci. The formation of Drosophila Swip-1 foci requires successful cell adhesion between FCMs and founder cells (FCs) or growing myotubes. Moreover, Drosophila Swip-1 foci were found to increase in number in sing22 mutants, which arrest myoblast fusion after prefusion complex formation. By contrast, Drosophila Swip-1 foci are not significantly enriched in blow2 and ketteJ4-48 mutants, which stop myogenesis beyond the prefusion complex stage but before plasma membrane merging. Therefore, we hypothesise that Drosophila Swip-1 participates in the breakdown of the prefusion complex during the progression of myoblast fusion.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3