Water dynamics in the digestive tract of the freshwater rainbow trout during the processing of a single meal

Author:

Bucking Carol1,Wood Chris M.1

Affiliation:

1. McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada

Abstract

SUMMARYThe temporal effects of feeding and digestion on chyme composition,specifically water and solid content, and net fluxes across the gastrointestinal tract, as well as plasma parameters, were examined in freshwater rainbow trout. A single meal of commercial dry pellets,incorporating ballotini beads as inert reference markers, was employed. Plasma Na+ levels increased by 15–20% at 2 h post-feeding, where Cl– levels did not change. Plasma osmolality was well regulated despite an initial chyme osmolality (775 mOsm) 2.8-fold higher than that in the blood plasma. Chyme osmolality throughout the gastrointestinal tract remained significantly higher than plasma osmolality for the duration of the 72 h period. Solid material was absorbed along the entire intestinal tract, although not in the stomach, necessitating the incorporation of an inert marker. A similar temporal pattern of transit between the ballotini beads (solid phase marker) and 3[H]-PEG 4000 (fluid phase marker),provided support for the use of ballotini beads. Large additions of water to the chyme were seen in the stomach, the largest occurring within 2 h following feeding (7.1±1.4 ml kg–1), and amounted to ∼16 ml kg–1 over the first 12 h. As the chyme entered the anterior intestine, a further large water secretion (3.5±0.5 ml kg–1) was seen. Thereafter the water fluxes into the chyme of the anterior intestine decreased steadily over time, but remained positive,whereas the mid-intestine exhibited net absorption of water at all time points, and the posterior intestine demonstrated little water handling at any time. The endogenous water that was secreted into the anterior intestine was absorbed along the tract, which showed a net water flux close to zero. However, assuming that the water secreted into the stomach was endogenous in nature, the processing of a single meal resulted in net loss of endogenous water (0.24 ml kg–1 h–1) to the environment,a beneficial consequence of the osmotic challenge offered by the food for a freshwater hyperosmotic regulator.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3