The Tie-2 ligand Angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism

Author:

Scharpfenecker Marion1,Fiedler Ulrike1,Reiss Yvonne1,Augustin Hellmut G.1

Affiliation:

1. Department of Vascular Biology and Angiogenesis Research, Tumor Biology Center, 79106 Freiburg, Germany

Abstract

The angiopoietins Ang-1 and Ang-2 have been identified as ligands of the endothelial receptor tyrosine kinase Tie-2, which controls vascular assembly and endothelial quiescence. The largely complementary phenotypes of Ang-1-deficient mice and Ang-2-overexpressing mice have led to an antagonistic model in which Ang-1 acts as Tie-2-activating agonist and Ang-2 acts as a Tie-2-inhibiting antagonist. To date, no mechanistic equivalent of the antagonistic Ang-1/Ang-2 model has been established and the mechanisms of Ang-2 function in particular remain mysterious. We have studied the effector functions of Ang-1 and Ang-2 on quiescent endothelial cells using a three-dimensional co-culture model of endothelial cells and smooth-muscle cells. Endothelial-cell monolayer integrity in this model is dependent on Tie-2 signaling, as evidenced by detaching endothelial cells following exposure to the small molecular weight Tie-2 inhibitor A-422885.66, which cannot be overcome by exogenous Ang-1. Accordingly, exogenous Ang-2 rapidly destabilizes the endothelial layer, which can be observed within 30-60 minutes and leads to prominent endothelial-cell detachment within 4 hours. Exogenous Ang-2-mediated endothelial-cell detachment can be rescued by Ang-1, soluble Tie-2 and vascular endothelial growth factor. Similar findings were obtained in an umbilical-vein explant model. Ang-2 is mainly produced by endothelial cells and therefore acts primarily in an autocrine manner. Thus, stimulated release of endogenous Ang-2 or overexpression of Ang-2 in endothelial cells perturbs co-culture spheroid integrity, which can be rescued by exogenous Ang-1 and vascular endothelial growth factor. However, autocrine Ang-2-mediated endothelial-cell detachment cannot be blocked by soluble Tie-2. Taken together, the data demonstrate for the first time the antagonistic Ang-1/Ang-2 concept in a defined cellular model and identify Ang-2 as a rapidly acting autocrine regulator of the endothelium that acts through an internal autocrine loop mechanism.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 326 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3