The sub-pulmonary conus and the arterial anastomosis as important sites of cardiovascular regulation in the crocodile Crocodylus porosus

Author:

Axelsson M,Franklin C,Fritsche R,Grigg G,Nilsson S

Abstract

We present evidence to support the hypothesis that the arterial anastomosis and the cogteeth-like valves located in the sub-pulmonary conus in the right ventricle are important sites of cardiovascular regulation in the crocodile Crocodylus porosus. The influence of the arterial anastomosis on the development of the 'foramen spike' in the left aortic pressure trace, which occurs at the onset of diastole when the pressures in the right and left aortas become equal, and on gastrointestinal blood flow was examined in unanaesthetised C. porosus using blood vessel occluders. Measurements of blood flow in the arterial anastomosis showed that, during non-shunting conditions, there was a substantial systolic blood flow from the right aorta into the coeliac artery. The total coeliac artery blood flow was the sum of the anastomosis flow from the right aorta plus the left aortic flow originating from the right aorta via the foramen of Panizza during diastole. During mechanically induced pulmonary-to-systemic shunting, the anastomosis blood flow was reversed, with blood flowing from the left to the right aorta. The magnitude of the 'foramen spike' was directly related to the vascular resistance in the anastomosis. When vascular resistance in the anastomosis was high, such as during mechanical occlusion, there was an increase in the right aortic to left aortic pressure gradient during systole which resulted in an increase the foramen spike amplitude. Recordings of right intraventricular pressure in unanaesthetised C. porosus showed spontaneous changes in right intracardiac systolic pressure. The pressure recordings were biphasic, with the second contraction (isometric) being highly variable in size, indicating the control of pulmonary outflow resistance, possibly via the 'cogteeth valves' located in the sub-pulmonary conus in the right ventricle.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3