Octopamine modulates the responses and presynaptic inhibition of proprioceptive sensory neurones in the locust Schistocerca gregaria

Author:

Matheson T

Abstract

A multineuronal proprioceptor, the femoral chordotonal organ (feCO), monitors the position and movements of the tibia of an insect leg. Superfusing the locust metathoracic feCO with the neuromodulator octopamine, or the octopamine agonist synephrine, affects the position (tonic) component of the organ's response, but not the movement (phasic) component. Both octopamine and synephrine act with the same threshold (10(-6) mol l-1). Individual sensory neurones that respond tonically at flexed tibial angles show increased tonic spike activity following application of octopamine, but those that respond at extended angles do not. Tonic spiking of phaso-tonic flexion-sensitive neurones is enhanced but their phasic spiking is unaffected. Bath application of octopamine to the feCO increases the tonic component of presynaptic inhibition recorded in the sensory terminals, but not the phasic component. This inhibition should at least partially counteract the increased sensory spiking and reduce its effect on postsynaptic targets such as motor neurones. Furthermore, some phasic sensory neurones whose spiking is not affected by octopamine nevertheless show enhanced tonic synaptic inputs. The chordotonal organ is not known to be under direct efferent control, but its output is modified by octopamine acting on its sensory neurones to alter their responsiveness to mechanical stimuli and by presynaptic inhibition acting on their central branches. The effects of this neuromodulator acting peripherally on sensory neurones are therefore further complicated by indirect interactions between the sensory neurones within the central nervous system. Increases of sensory neurone spiking caused by neuromodulators may not necessarily lead to parallel increases in the responses of postsynaptic target neurones.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3