The effect of reduced gravity on the kinematics of human walking: a test of the dynamic similarity hypothesis for locomotion.

Author:

Donelan J M1,Kram R1

Affiliation:

1. Integrative Biology Department, University of California, Berkeley, CA 94720-3140, USA.

Abstract

To gain insight into the basic principles that govern the biomechanics of locomotion, we investigated the effect of reduced gravity on walking kinematics. We hypothesized that humans walk in a dynamically similar fashion at combinations of speed and simulated gravity that provide equal values of the Froude number, v2/gLleg, where v is forward speed, g is gravitational acceleration and Lleg is leg length. The Froude number has been used to predict the kinematics and kinetics of legged locomotion over a wide range of animal sizes and speeds, and thus provides a potentially unifying theory for the combined effects of speed, size and gravity on locomotion biomechanics. The occurrence of dynamic similarity at equal Froude numbers has been attributed previously to the importance of gravitational forces in determining locomotion mechanics. We simulated reduced gravity using a device that applies a nearly constant upward force to the torso while subjects walked on a treadmill. We found that at equal Froude numbers, under different levels of gravity (0.25g-1.0g), the subjects walked with nearly the same duty factor (ratio of contact time to stride time), but with relative stride lengths (Ls/Lleg, where Ls is stride length) that differed by as much as 67 %, resulting in the rejection of our hypothesis. To understand the separate effects of speed and gravity further, we compared the mechanics of walking at the same absolute speed at different levels of gravity (0.25g-1.0g). In lower gravity, subjects walked with lower duty factors (10 %) and shorter relative stride lengths (16 %). These modest changes in response to the fourfold change in gravity indicate that factors other than gravitational forces are the primary determinants of walking biomechanics.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3