Abstract
A robust technique for determining the angle of attack of insect wings from film of free flight has to date proved elusive. This report describes the development of two new methods ­ the Strips and Planes techniques ­ which were designed to overcome some of the limitations experienced in previous studies. The accuracy and robustness of these novel methods were tested extensively using simulated hawkmoth wing outlines generated for a realistic range of wing positions and torsion. The results were compared with those from two existing methods ­ the Symmetry and Landmarks procedures. The performance of the latter technique will be strongly species-dependent; it could not be successfully applied to hawkmoth flight because of practical difficulties in obtaining suitable landmarks. The Planes method was the least successful of the remaining techniques, especially during those phases of the wingbeat when the orientations of the two wings relative to the camera viewpoint were similar. The Symmetry and Strips methods were tested further to investigate the effects on their performance of introducing additional camber or wing motion asymmetry. The results showed clearly that the Strips method should be the technique of choice wherever the axis of wing torsion is close to the longitudinal axis of the wing. The procedure involves the experimenter matching a model wing divided into chordwise strips to the true wing outline digitized from high-speed film. The use of strips rather than the points digitized in previous studies meant that the analysis required only one wing outline to be digitized. Symmetry of motion between the left and right wings is not assumed. The implications of requiring human input to the Strips method, as opposed to the strictly numerical algorithms of the alternative techniques, are discussed. It is argued that the added flexibility that this provides in dealing with images which have typically been recorded in suboptimal conditions outweighs the introduction of an element of subjectivity. Additional observations arising from the use of the Strips analysis with high-speed video sequences of hawkmoth flight are given.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献