Extracellular carbonic anhydrase and an acid-base disequilibrium in the blood of the dogfish Squalus acanthias

Author:

Gilmour K,Henry R,Wood C,Perry S

Abstract

The electrometric [Delta]pH method and an in vitro radioisotopic HCO3- dehydration assay were used to demonstrate the presence of true extracellular carbonic anhydrase (CA) activity in the blood of the Pacific spiny dogfish Squalus acanthias. An extracorporeal circulation and stopflow technique were then used to characterise the acid­base disequilibrium in the arterial (postbranchial) blood. During the stopflow period, arterial pH (pHa) decreased by 0.028±0.003 units (mean ± s.e.m., N=27), in contrast to the increase in pHa of 0.029±0.006 units (mean ± s.e.m., N=6) observed in seawater-acclimated rainbow trout Oncorhynchus mykiss under similar conditions. The negative disequilibrium in dogfish blood was abolished by the addition of bovine CA to the circulation, while inhibition by benzolamide of extracellular and gill membrane-bound CA activities reversed the direction of the acid­base disequilibrium such that pHa increased by 0.059±0.016 units (mean ± s.e.m., N=6) during the stopflow period. When the CA activity of red blood cells (rbcs) was additionally inhibited using acetazolamide, the magnitude of the negative disequilibrium was increased significantly to -0.045±0.007 units (mean ± s.e.m., N=6). Blockage of the rbc Cl-/HCO3- exchanger using 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS) also increased the magnitude of the negative disequilibrium, in this case to -0.089±0.008 units (mean ± s.e.m., N=6). Exposure of dogfish to hypercapnia had no effect on the disequilibrium, whereas the disequilibrium was significantly larger under hypoxic conditions, at -0.049±0.008 units (mean ± s.e.m., N=6). The results are interpreted within a framework in which the absence of a positive CO2 excretion disequilibrium in the arterial blood of the spiny dogfish is attributed to the membrane-bound and extracellular CA activities. The negative disequilibrium may arise from the continuation of Cl-/HCO3- exchange in the postbranchial blood and/or the hydration of CO2 added to the plasma postbranchially. Two possible sources of this CO2 are discussed; rbc CO2 production or the admixture of blood having 'low' and 'high' CO2 tensions, i.e. the mixing of postbranchial blood with blood which has bypassed the respiratory exchange surface.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3