EmrE, the smallest ion-coupled transporter, provides a unique paradigm for structure-function studies.

Author:

Schuldiner S1,Lebendiker M1,Yerushalmi H1

Affiliation:

1. Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Israel. shimons@leonardo.ls.huji.ac.il

Abstract

EmrE is an Escherichia coli multidrug transporter which confers resistance to a wide variety of toxicants by actively removing them in exchange for hydrogen ions. EmrE is a highly hydrophobic 12 kDa protein which has been purified by taking advantage of its unique solubility in organic solvents. After solubilization and purification, the protein retains its ability to transport as judged from the fact that it can be reconstituted in a functional form. Hydrophobicity analysis of the sequence yielded four putative transmembrane domains of similar sizes. Results from transmission Fourier transform infrared measurements agree remarkably well with this hypothesis and yielded alpha-helical estimates of 78% and 80% for EmrE in CHCl3:MeOH and 1,2-dimyristoyl phosphocholine, respectively. Furthermore, the fact that most of the amide groups in the protein do not undergo amide-proton H/D exchange implies that most (approximately 80%) of the residues are embedded in the bilayer. These observations are only consistent with four transmembrane helices. A domain lined by Cys41 and Cys95 accessible only to substrates such as the organic mercurial 4-(chloromercuri)benzoic acid has been identified. Both residues are asymmetric in their location with respect to the plane of the membrane, Cys95 being closer than Cys41 to the outside face of the membrane. In co-reconstitution experiments of wild-type protein with three different inactive mutants, negative dominance has been observed. This phenomenon suggests that EmrE is functional as a homo-oligomer.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3