Silicon-based plant defences, tooth wear and voles

Author:

Calandra Ivan1,Zub Karol2,Szafrańska Paulina A.2,Zalewski Andrzej2,Merceron Gildas3

Affiliation:

1. GEGENAA – EA 3795, Université de Reims Champagne-Ardenne, 51100 Reims, France

2. Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowiez˙a, Poland

3. iPHEP UMR 7262, CNRS & Université de Poitiers, 86073 Poitiers, France

Abstract

ABSTRACT Plant–herbivore interactions are hypothesized to drive vole population cycles through the grazing-induced production of phytoliths in leaves. Phytoliths act as mechanical defences because they deter herbivory and lower growth rates in mammals. However, how phytoliths impair herbivore performance is still unknown. Here, we tested whether the amount of phytoliths changes tooth wear patterns. If confirmed, abrasion from phytoliths could play a role in population crashes. We applied dental microwear texture analysis (DMTA) to laboratory and wild voles. Lab voles were fed two pelleted diets with differing amounts of silicon, which produced similar dental textures. This was most probably due to the loss of food mechanical properties through pelletization and/or the small difference in silicon concentration between diets. Wild voles were trapped in Poland during spring and summer, and every year across a population cycle. In spring, voles feed on silica-rich monocotyledons, while in the summer they also include silica-depleted dicotyledons. This was reflected in the results; the amount of silica therefore leaves a traceable record in the dental microwear texture of voles. Furthermore, voles from different phases of population cycles have different microwear textures. We tentatively propose that these differences result from grazing-induced phytolith concentrations. We hypothesize that the high amount of phytoliths in response to intense grazing in peak years may result in malocclusion and other dental abnormalities, which would explain how these silicon-based plant defences help provoke population crashes. DMTA could then be used to reconstruct vole population dynamics using teeth from pellets or palaeontological material.

Funder

Agence Nationale de la Recherche

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference70 articles.

1. Demography and resource use by microtine rodents near Toolik Lake, Alaska, U.S.A;Batzli;Arct. Alp. Res.,1990

2. To Bonferroni or not to Bonferroni: when and how are the questions;Cabin;Bull. Ecol. Soc. Am.,2000

3. Teasing apart the contributions of hard dietary items on 3D dental microtextures in primates;Calandra;J. Hum. Evol.,2012

4. Isotopic partitioning by small mammals in the subnivium;Calandra;Ecol. Evol.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3