An in vivo study of exocytosis of cement proteins from barnacle Balanus improvisus (D.) cyprid larva

Author:

Ödling Kristin1,Albertsson Christian1,Russell James T.2,Mårtensson Lena G. E.1

Affiliation:

1. Göteborg University, Department of Zoology, Zoophysiology,Medicinaregatan 18 SE-413 90 Göteborg, Sweden

2. Section on Cell Biology and Signal Transduction, NICHD, NIH, Building 49,Room 5A-78, 22 Convent Drive, MSC 4480, Bethesda, MD 20892-4480,USA

Abstract

SUMMARY Barnacles, like many marine invertebrates, cause serious biofouling to marine industrial constructions and hulls of vessels as they attach themselves to such surfaces. Precise biochemical understanding of the underwater adhesion to surfaces requires a detailed characterization of the biology of the control of barnacle cement secretion and the proteins that make up the cement. In this study, we have investigated cement secretion by cyprid larvae of Balanus improvisus (D.) and the morphology of their cement glands. We studied the cement protein organization within cement granules and categorized the granules into four different types according to their size and morphology,before and after stimulation of secretion. In addition, we followed the exocytotic process of cement secretion in vivo and discovered that granules undergo a dramatic swelling during secretion. Such swelling might be due to an increased osmotic activity of granule contents, following a process of hydration. We hypothesize that this hydration is essential for exocytotic secretion and conclude that cement protein exocytosis is a more complex process than previously thought and is similar to exocytotic secretion in vertebrate systems, such as histamine secretion from mast cells and exocrine secretion in the salivary gland and the pancreas.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3