Myogenic cells fates are antagonized by Notch only in asymmetric lineages of theDrosophilaheart, with or without cell division

Author:

Han Zhe1,Bodmer Rolf2

Affiliation:

1. Present address: Department of Molecular Biology, UT Southwestern Medical Center, 6000 Harry Hines Boulevard, NA8.510, Dallas, TX 75390-9148, USA

2. Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

During the formation of the Drosophila heart, a combinatorial network that integrates signaling pathways and tissue-specific transcription factors specifies cardiac progenitors, which then undergo symmetric or asymmetric cell divisions to generate the final population of diversified cardiac cell types. Much has been learned concerning the combinatorial genetic network that initiates cardiogenesis, whereas little is known about how exactly these cardiac progenitors divide and generate the diverse population of cardiac cells. In this study, we examined the cell lineages and cell fate determination in the heart by using various cell cycle modifications. By arresting the cardiac progenitor cell divisions at different developing stages, we determined the exact cell lineages for most cardiac cell types. We found that once cardiac progenitors are specified, they can differentiate without further divisions. Interestingly, the progenitors of asymmetric cell lineages adopt a myocardial cell fate as opposed to a pericardial fate when they are unable to divide. These progenitors adopt a pericardial cell fate,however, when cell division is blocked in numb mutants or in embryos with constitutive Notch activity. These results suggest that a numb/Notch-dependent cell fate decision can take place even in undivided progenitors of asymmetric cell divisions. By contrast, in symmetric lineages, which give rise to a single type of myocardial-only or pericardial-only progeny, repression or constitutive activation of the Notch pathway has no apparent effect on progenitor or progeny fate. Thus, inhibition of Notch activity is crucial for specifying a myogenic cell fate only in asymmetric lineages. In addition, we provide evidence that whether or not Suppressor-of-Hairless can become a transcriptional activator is the key switch for the Numb/Notch activity in determining a myocardial versus pericardial cell fate.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3