Connecting brain to behaviour: a role for general purpose steering circuits in insect orientation?

Author:

Steinbeck Fabian1,Adden Andrea2,Graham Paul1ORCID

Affiliation:

1. School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK

2. Department of Biology, Lund University, 223 62 Lund, Sweden

Abstract

ABSTRACT The lateral accessory lobes (LALs), paired structures that are homologous among all insect species, have been well studied for their role in pheromone tracking in silkmoths and phonotaxis in crickets, where their outputs have been shown to correlate with observed motor activity. Further studies have shown more generally that the LALs are crucial both for an insect's ability to steer correctly and for organising the outputs of the descending pathways towards the motor centres. In this context, we propose a framework by which the LALs may be generally involved in generating steering commands across a variety of insects and behaviours. Across different behaviours, we see that the LAL is involved in generating two kinds of steering: (1) search behaviours and (2) targeted steering driven by direct sensory information. Search behaviours are generated when the current behaviourally relevant cues are not available, and a well-described LAL subnetwork produces activity which increases sampling of the environment. We propose that, when behaviourally relevant cues are available, the LALs may integrate orientation information from several sensory modalities, thus leading to a collective output for steering driven by those cues. These steering commands are then sent to the motor centres, and an additional efference copy is sent back to the orientation-computing areas. In summary, we have taken known aspects of the neurophysiology and function of the insect LALs and generated a speculative framework that suggests how LALs might be involved in steering control for a variety of complex real-world behaviours in insects.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3