Drinking problems on a ‘simple’ diet: physiological convergence in nectar-feeding birds

Author:

Nicolson Susan W.1,Fleming Patricia A.2

Affiliation:

1. Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa

2. Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia

Abstract

Regulation of energy and water are by necessity closely linked in avian nectarivores, because the easily available sugars in nectar are accompanied by an excess of water but few electrolytes. In general, there is convergence in morphology and physiology between three main lineages of avian nectarivores that have evolved on different continents – the hummingbirds, sunbirds and honeyeaters. These birds show similar dependence of sugar preferences on nectar concentration, high intestinal sucrase activity and rapid absorption of hexoses via mediated and paracellular routes. There are differences, however, in how these lineages deal with energy challenges, as well as processing the large volumes of preformed water ingested in nectar. While hummingbirds rely on varying renal water reabsorption, the passerine nectarivores modulate intestinal water absorption during water loading, thus reducing the impact on the kidneys. Hummingbirds do not generally cope with salt loading, and have renal morphology consistent with their ability to produce copious dilute urine; by contrast, as well as being able to deal with dilute diets, honeyeaters and sunbirds are more than capable of dealing with moderately high levels of added electrolytes. And finally, in response to energy challenge, hummingbirds readily resort to torpor, while the passerines show renal and digestive responses that allow them to deal with short-term fasts and rapidly restore energy balance without using torpor. In conclusion, sunbirds and honeyeaters demonstrate a degree of physiological plasticity in dealing with digestive and renal challenges of their nectar diet, while hummingbirds appear to be more constrained by this diet.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3