Memo is a cofilin-interacting protein that influences PLCγ1 and cofilin activities, and is essential for maintaining directionality during ErbB2-induced tumor-cell migration

Author:

Meira Maria1,Masson Régis1,Stagljar Igor2,Lienhard Susanne1,Maurer Francisca1,Boulay Anne1,Hynes Nancy E.1

Affiliation:

1. Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland

2. Terrence Donnelly Centre for Cellular and Biomolecular Research (CCBR), Department of Biochemistry and Department of Molecular Genetics, University of Toronto, Toronto, M5S 3E1, Ontario, Canada

Abstract

Heregulin (HRG) activates ErbB2-ErbB3 heterodimers thereby stimulating many cellular responses, including motility. Memo and PLCγ1 interact with ErbB2 autophosphorylation sites and are essential for HRG-induced chemotaxis. By tracing HRG-stimulated cell migration in Dunn chambers, we found that Memo- or PLCγ1 knockdown (KD) strongly impairs cell directionality. Memo has no obvious enzymatic activity and was discovered via its ability to complex with ErbB2. Using the yeast two-hybrid approach to gain insight into Memo function, an interaction between Memo and cofilin, a regulator of actin dynamics, was uncovered. The interaction was confirmed in vitro using recombinant proteins and in vivo in co-immunoprecipitation experiments where Memo was detected in complexes with cofilin, ErbB2 and PLCγ1. Interestingly, in Memo KD cells, HRG-induced PLCγ1 phosphorylation was decreased, suggesting that Memo regulates PLCγ1 activation. Furthermore, HRG-induced recruitment of GFP-cofilin to lamellipodia is impaired in Memo and in PLCγ1 KD cells, suggesting that both proteins lie upstream of cofilin in models of ErbB2-driven tumor-cell migration. Finally, in vitro F-actin binding and depolymerization assays showed that Memo enhances cofilin depolymerizing and severing activity. In summary, these data indicate that Memo also regulates actin dynamics by interacting with cofilin and enhancing its function.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3