FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets

Author:

Komatsu Mai12,Chujo Atsushi1,Nagato Yasuo1,Shimamoto Ko2,Kyozuka Junko13

Affiliation:

1. Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan

2. Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan

3. CREST, Japan Science and Technology Corporation, Tokyo 101-0062, Japan

Abstract

Inflorescences of grass species have a distinct morphology in which florets are grouped in compact branches called spikelets. Although many studies have shown that the molecular and genetic mechanisms that control floret organ formation are conserved between monocots and dicots, little is known about the genetic pathway leading to spikelet formation. In the frizzy panicle(fzp) mutant of rice, the formation of florets is replaced by sequential rounds of branching. Detailed analyses revealed that several rudimentary glumes are formed in each ectopic branch, indicating that meristems acquire spikelet identity. However, instead of proceeding to floret formation, axillary meristems are formed in the axils of rudimentary glumes and they either arrest or develop into branches of higher order. The fzp mutant phenotype suggests that FZP is required to prevent the formation of axillary meristems within the spikelet meristem and permit the subsequent establishment of floral meristem identity. The FZP gene was isolated by transposon tagging. FZP encodes an ERF transcription factor and is the rice ortholog of the maize BD1gene. Consistent with observations from phenotypic analyses, FZPexpression was found to be restricted to the time of rudimentary glumes differentiation in a half-ring domain at the base of which the rudimentary glume primordium emerged.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3