Fibrodysplasia ossificans progressiva: mechanisms and models of skeletal metamorphosis

Author:

Kaplan Frederick S.123,Chakkalakal Salin A.13,Shore Eileen M.134

Affiliation:

1. Departments of Orthopaedic Surgery

2. Medicine and

3. Center for Research in FOP and Related Disorders, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA

4. Genetics, and

Abstract

Fibrodysplasia ossificans progressiva (FOP; MIM #135100) is a debilitating genetic disorder of connective tissue metamorphosis. It is characterized by malformation of the great (big) toes during embryonic skeletal development and by progressive heterotopic endochondral ossification (HEO) postnatally, which leads to the formation of a second skeleton of heterotopic bone. Individuals with these classic clinical features of FOP have the identical heterozygous activating mutation (c.617G>A; R206H) in the gene encoding ACVR1 (also known as ALK2), a bone morphogenetic protein (BMP) type I receptor. Disease activity caused by this ACVR1 mutation also depends on altered cell and tissue physiology that can be best understood in the context of a high-fidelity animal model. Recently, we developed such a knock-in mouse model for FOP (Acvr1R206H/+) that recapitulates the human disease, and provides a valuable new tool for testing and developing effective therapies. The FOP knock-in mouse and other models in Drosophila, zebrafish, chickens and mice provide an arsenal of tools for understanding BMP signaling and addressing outstanding questions of disease mechanisms that are relevant not only to FOP but also to a wide variety of disorders associated with regenerative medicine and tissue metamorphosis.

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3