Thermogenesis, food intake and serum leptin in cold-exposed lactating Brandt's volesLasiopodomys brandtii

Author:

Zhang Xue-Ying12,Wang De-Hua1

Affiliation:

1. State Key Laboratory of Integrated Management of Pest Insects and Rodents,Institute of Zoology, Chinese Academy of Sciences, 25 Beisihuan Xilu,Zhongguancun, Haidian, Beijing 100080, China

2. Graduate School of the Chinese Academy of Sciences, Beijing 100049,China

Abstract

SUMMARYLactation is the most energetically expensive period for mammals and is associated with increased metabolism and energy intake, but decreased thermogenic capacity. It is well known that small mammals increase both food intake and thermogenesis in the cold. The present study aimed to examine whether Brandt's voles Lasiopodomys brandtii could adjust energy intake and thermogenesis to accommodate simultaneous lactation and cold exposure. The voles were placed into two temperature treatments: warm(23±1°C) and cold (5±1°C). Animals at each temperature treatment were further divided into two groups: non-reproductive (NR) and lactating females. We found that lactating voles at peak lactation in the cold enhanced food intake by 2.6 g day–1 compared with those in the warm, and increased uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT), to the same level as the cold-exposed NR females. Serum leptin levels decreased significantly during lactation and were positively correlated with body mass and fat mass. After correcting for the effects of body mass,residual serum leptin was negatively correlated with residual gross energy intake and residual RMR. In addition, residual serum leptin levels were positively correlated with UCP1 contents in the warm, but not in the cold. Together, these data suggest that lactating voles can increase thermogenic capacity and energy intake to meet the high energetic costs of simultaneous lactation and cold exposure. Further, serum leptin appears to be involved in the energy intake regulation and thermoregulation, but the thermoregulation in the cold may be mainly mediated by other factors.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3