Effects of extracellular changes on spontaneous heart rate of normoxia-and anoxia-acclimated turtles (Trachemys scripta)

Author:

Stecyk Jonathan A. W.1,Farrell Anthony P.2

Affiliation:

1. Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

2. Faculty of Land and Food Systems and Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

Abstract

SUMMARYHeart rate (fH) of the anoxia-tolerant freshwater turtle (Trachemys scripta) during prolonged anoxia exposure is 2.5-to 5-times lower than the normoxic rate, but whether alterations in blood composition that accompany prolonged anoxia contribute to this bradycardia is unknown. We examined how temperature acclimation, oxygen deprivation,acidosis, hyperkalemia, hypercalcemia and adrenaline affect chronotropy in the turtle myocardium. We monitored spontaneous contraction rates of right-atrial preparations obtained from 21°C- and 5°C-acclimated turtles that had been exposed to either normoxia or anoxia (6 h at 21°C; 2 weeks at 5°C). Sequential exposures to saline solutions were designed to mimic, in a step-wise manner, the shift from a normoxic to anoxic extracellular condition (for normoxia-acclimated preparations) or the reverse (for anoxia-acclimated preparations). Our results clearly show that prolonged anoxia exposure re-sets the intrinsic fH of turtles at both temperatures, with reductions in intrinsic fH in the range of 25%–53% compared with normoxia. This intrinsic change would contribute to the bradycardia observed with prolonged anoxia. Further, we found negative chronotropic effects of extracellular anoxia, acidosis and hyperkalemia, and positive chronotropic effects of hypercalcemia and adrenaline. The exact nature of these extracellular effects depended, however,on the acclimation temperature and the prior exposure of the animal to anoxia. With normoxia-acclimated preparations at 21°C, combined anoxia and acidosis (pH reduced from ∼7.8 to ∼7.2) significantly reduced spontaneous fH by 22% and subsequent exposure to hyperkalemia (3.5 mmol l–1K+) further decreased fH. These negative chronotropic effects were ameliorated by increasing the adrenaline concentration from the tonic level of 1 nmol l–1 to 60 nmol l–1. However, in anoxia-acclimated preparations at 21°C, anoxia alone inhibited fH (by ∼30%). This negative chronotropic effect was counteracted by both hypercalcemia (6 mmol l–1Ca2+) and adrenaline (60 nmol l–1). At 5°C,only the combination of anoxia, acidosis (pH reduced from ∼8.0 to∼7.5) and hyperkalemia (3.5 mmol l–1 K+)significantly reduced spontaneous fH (by 23%) with preparations from normoxia-acclimated turtles. This negative chronotropic effect was fully reversed by hypercalcemia (10 mmol l–1Ca2+). By contrast, spontaneous fH of anoxia-acclimated preparations at 5°C was not affected by any of the extracellular changes. We conclude that prior temperature and anoxia experiences are central to determining fH during prolonged anoxia in Trachemys scripta both as a result of the re-setting of pacemaker rhythm and through the potential influence of extracellular changes.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3