Cloned cDNA sequence for the human mesothelial protein ‘mesosecrin’ discloses its identity as a plasminogen activator inhibitor (PAI-1) and a recent evolutionary change in transcript processing

Author:

Cicila G.T.1,O'Connell T.M.1,Hahn W.C.1,Rheinwald J.G.1

Affiliation:

1. Division of Cell Growth and Regulation, Dana-Farber Cancer Institute, Boston, MA.

Abstract

Mesosecrin, a Mr approximately 46 × 10(3) glycoprotein secreted in abundance by human mesothelial cells in culture, was recently described by this laboratory. We isolated partial cDNA clones for mesosecrin from a human mesothelial cell cDNA library in lambda gt11 using a specific antiserum. Comparison of mesosecrin cDNA sequences with the recently published sequence for plasminogen activator inhibitor-1 (PAI-1) cloned from cDNA libraries of endothelial and other cell types revealed that mesosecrin and PAI-1 are the same protein. Reverse fibrin autography of electrophoretically fractionated medium from mesothelial cell cultures confirmed that mesosecrin is functional as a plasminogen activator inhibitor. The mesosecrin/PAI-1 cDNA clones hybridized to abundant 3.6 and 2.6 kb (kb = 10(3) bases) mRNAs on Northern blots of cultured human mesothelial cell and endothelial cell RNA. These mRNA sizes correspond to those recently published for human endothelial and fibrosarcoma PAI-1 mRNA, which most likely result from alternate polyadenylation sites. Messages 3.6 and 2.6 kb long were also detected in cells cultured from orangutans and African green monkeys, but only an approximately 3.6 kb mRNA was detected in cells of lower primates and several other mammalian species. Thus the extra polyadenylation site in the PAI-1 gene, responsible for the shorter form of the RNA, apparently has been acquired recently during primate evolution. Because they are more easily propagated in culture than endothelial cells, human mesothelial cells offer a new and advantageous system for PAI-1 production and study of its regulation and function.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3